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GOES-R Magnetometer Subsystem

GOES-R has:

• Two fluxgate sensors on an 8.5 meter boom.

• An inboard sensor 6.5 meters from the 

spacecraft body.

• An outboard sensor 8.5 meters from the 

spacecraft body.

• Electronics box on the spacecraft.
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Performance Requirements

Average Errors

• Absolute mean plus 3 sigma error < 1.7 nT

• Computed over a day

• Quiet day field

Worst Case Errors

• Transients > 0.3 nT

• Fewer than one per hour

• None more than 5 seconds in duration
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Overview

With two magnetometers on a boom, we can average and estimate the ambient field only, 
or we can solve for both ambient and spacecraft fields.  The second approach is called the 
gradiometer algorithm, and it provides a simple way to remove spacecraft stray fields.  

• The problems with the gradiometer algorithm are: 

1. the dipole has to be along the boom axis

2. stray field dipole location must be known

3. solving for stray fields as well as ambient fields adds noise

• In this analysis, we:

1. ignore the first two problems 

2. assume simple noise and stray field models

3. compare the benefit of solving for stray field with the detriment of adding noise

4. examine other ways of removing stray fields

2016 ESA Workshop on Aerospace EMC5/25/2016 4



Noise and Stray Field Models

• We model both stray fields and magnetometer noise as isotropic zero-mean Gaussian white noise.

• Stray field variance 𝜎𝑠
2 is used to compute the averaging consider covariance.

• Noise variance 𝜎2 is used to predict noise covariance for both averaging and the gradiometer.
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The Question

Averaging or Gradiometry?

To help decide the question, we simulated the two algorithms.  For our assumed noise and 
stray field levels (both around 0.1 nT), averaging gave about half the error of the gradiometer.
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Observation Model

• We want the ambient magnetic field 𝐵𝐴, but the inboard 𝐵𝐼𝐵 and outboard 

𝐵𝑂𝐵 magnetometer measurements are corrupted stray fields 𝐵𝑆 and noise 𝑛

𝐵𝐼𝐵 = 𝐵𝐴 + 𝐵𝑆  𝑟𝐼𝐵 + 𝑛𝐼𝐵

𝐵𝑂𝐵 = 𝐵𝐴 + 𝐵𝑆  𝑟𝑂𝐵 + 𝑛𝑂𝐵

• Stray field may be approximated by that of a magnetic dipole 𝑚.  If the 

dipole-to-magnetometer vector is  𝑟, the stray field is

𝐵𝑆 =
𝜇0
4𝜋𝑟3

3  𝑟  𝑟𝑇 − 𝐼3 𝑚 = 𝛽  𝑟 𝑚
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Gradiometry or Averaging?

• Is it better to solve for the stray field as the gradiometer does or just average and reduce noise?

• We can compute the noise covariance of the algorithms, but the answer depends on the stray 

field size.

• For that, we add a consider covariance to the averaging noise covariance.

• If the gradiometer variance is still larger than the total averaging covariance, averaging is 

preferable.
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Gradiometer Geometry

2016 ESA Workshop on Aerospace EMC5/25/2016 9

𝑟𝐼𝐵

𝑟𝑂𝐵

spacecraft

inboard outboard

dipole

The gradiometer model assumes the stray field dipole and magnetometer positions are collinear and that 
their separations are known. No attempt is made here to determine position sensitivity.  We define 
outboard-to-inboard separation ratio to be 𝜌

𝜌 =  𝑟𝑂𝐵 𝑟𝐼𝐵 ≥ 1



Gradiometer Variance

• Dipole strength falls off as the third power of distance, and direction does not change with distance

 𝑦 = 𝐵𝐼𝐵

𝐵𝑂𝐵
=

𝐼3 𝐼3
𝐼3  𝐼3 𝜌3

𝐵𝐴

𝐵𝑆
= 𝐻  𝑥

• If 𝜎2 is the observation noise variance, the normal matrix is

𝐻𝑇𝑊𝐻 =
1

𝜎2
2𝐼3 1 + 𝜌−3 𝐼3

1 + 𝜌−3 𝐼3 1 + 𝜌−6 𝐼3

• The inverse of 𝐻𝑇𝑊𝐻 is the state covariance matrix 𝑃

𝑃 =
𝜎2

𝜌3 − 1 2

1 + 𝜌6 𝐼3 −𝜌3 1 + 𝜌3 𝐼3
−𝜌3 1 + 𝜌3 𝐼3 2𝜌6𝐼3

• This gives the gradiometer ambient field variance 𝜎𝐺
2 as (upper left corner entry)

𝜎𝐺
2 =

1 + 𝜌6

𝜌3 − 1 2 𝜎
2
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GOES-R Magnetometer Requirements

Accuracy

• Absolute mean plus 3-sigma error < 1.7 nT in quiet fields

• Absolute mean plus 2-sigma error < 1.7 nT in storm fields

• Computed for worst case day in 15-year mission*

Transients

• Greater than 0.3 nT

• Fewer than one per hour

• Lasting no more than 5 seconds

*
Time span over which to compute the accuracy metric was left out of the requirements.
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Averaging Variance

• If we solve for 𝐵𝐴 as the average of the two magnetometer measurements, the observation model is

 𝑦 = 𝐵𝐼𝐵

𝐵𝑂𝐵
=

𝐼3
𝐼3

𝐵𝐴 = 𝐻𝐴  𝑥

• The noise covariance 𝑃𝑛 is  𝜎2𝐼3 2.  This is not total covariance because it ignores error due to stray 

field.  To account for this, we add a “consider covariance” 𝑃𝑐.  If 𝑃𝑆 is the stray field covariance 𝜎𝑆2𝐼3, its 

contribution is 

𝑃𝑐 = 𝑇𝑃𝑆𝑇
𝑇 = 𝑃𝑛𝐻𝐴

𝑇𝑊𝐻𝑆 𝑃𝑆 𝑃𝑛𝐻𝐴
𝑇𝑊𝐻𝑆

𝑇

• The total covariance 𝑃𝐴 is the sum of 𝑃𝑛 and 𝑃𝑐. The averaging ambient field variance 𝜎𝐴2 is then

𝜎𝐴
2 =

𝜎2

2
+

𝜌3 + 1

2𝜌3

2

𝜎𝑆
2
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Algorithm Comparison

• If gradiometer variance 𝜎𝐺2 is greater than averaging variance 𝜎𝐴2, averaging is the better choice.  The variance ratio is 

𝜎𝐴
2

𝜎𝐺
2 =

𝜌3 − 1 2

1 + 𝜌6
1

2
+

𝜌3 + 1

2𝜌3

2
𝜎𝑆
2

𝜎2

• Equating variances gives the stray field variance beyond which the gradiometer becomes the better choice

1 + 𝜌6

𝜌3 − 1 2
𝜎2 =

𝜎2

2
+

𝜌3 + 1

2𝜌3

2

𝜎𝑆
2

• Solving for the transition ratio gives

𝜎𝑆
𝜎
= 2

𝜌3

𝜌3 − 1

• For the GOES-R outboard-to-inboard distance ratio of 1.33, averaging is preferable to the gradiometer unless stray field standard 

deviation is 2.5 times that of the noise. We expect both noise and stray field standard deviations to be 0.1 nT.
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Averaging/Gradiometer Error

For GOES-R, 𝜌 is roughly 1.3, so the stray field has to be about 2.5 times as large as 
the noise for the gradiometer to be better than averaging.
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Hybrid Approaches

1. Perform a running average on the gradiometer to reduce the noise.

• The problem with the gradiometer is its amplification of the magnetometer noise.

• This is probably the easiest and most realistic option.

2. Eliminate averaging spikes not in the gradiometer solutions.

• This requires recognizing spikes and checking against the gradiometer solutions.

• It would also require running both algorithms in parallel.

3. Preprocess the raw magnetometer data to remove known stray fields.

• This requires working with the level 0 data.

• It is the most ambitious but probably the most accurate of the three approaches.
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Stray Field Models

• Because we believe that we can calibrate for static spacecraft fields, our primary 

concern now is with time-varying, i.e. stray fields.*

• Doug Westbury of Lockheed Martin measured every spacecraft assembly for 

compliance with the magnetic control requirements.

• The three that were found to generate the largest stray fields were the solar 

array, the arcjet thrusters and the reaction wheels.

*
There is still the possibility that the spacecraft dipole moment could reduce the useful range of magnetometer measurements. 
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Solar Array Model

• The solar array is divided into 16 circuits.  To reduce solar array field, half are wound clockwise and half 

counterclockwise. The magnitude of the net dipole moment 𝑚𝑆𝐴 is the sum of the effective solar array circuit areas 𝐴𝑖
𝑆𝐴

times the circuit currents 𝑖𝑖
𝑆𝐴

𝑚𝑆𝐴 = 

𝑖=1

𝑛

𝑚𝑖
𝑆𝐴 = 

𝑖=1

𝑛

𝐴𝑖
𝑆𝐴 𝑖𝑖

𝑆𝐴

• The dipole moment direction is perpendicular to the solar array and is a function of the solar array drive angle 𝜃

𝑚𝑆𝐴 = 𝑚𝑆𝐴
𝑠𝑖𝑛𝜃
0

𝑐𝑜𝑠𝜃

• If  𝑟𝑆𝐴 is the solar array dipole-to-magnetometer vector, the solar array field is

𝐵𝑆𝐴 = 𝛽  𝑟𝑆𝐴 𝑚𝑆𝐴
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Solar Array Drive Angle 𝜃
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The net solar array magnetic dipole is the sum of the individual circuit dipole 
moments and is located at the center of the solar array.



Arcjet Model

• For orbital inclination control, there are four arcjets on the –y (north) face of the spacecraft fired two at 

a time.  Although they may not themselves generate much field, the electrical current they require 

does.  

• The two arcjet-pair dipole moments 𝑚𝑎/𝑏 are a function of the currents 𝑖𝑎/𝑏 and the circuit areas 

𝐴𝑖
𝑎/𝑏normal to the x, y and z spacecraft axes.  These three areas may be written as a vector  𝐴𝑎/𝑏 such 

that the two arcjet dipoles take the form

𝑚𝑎/𝑏 = 𝐴𝑥
𝑎/𝑏

𝐴𝑦
𝑎/𝑏

𝐴𝑧
𝑎/𝑏 𝑇

𝑖𝑎/𝑏 =  𝐴𝑎/𝑏𝑖𝑎/𝑏

• If  𝑟𝐴𝐽 is the arcjets-to-magnetometer vector, the arcjet fields can then be written as a linear function of 

the arcjet current

𝐵𝑎/𝑏 = 𝛽  𝑟𝐴𝐽  𝐴𝑎/𝑏𝑖𝑎/𝑏
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Arcjet Dipole Moment Areas 𝐴𝑎/𝑏
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We want to estimate the projection of the circuit area onto the xy, yz and zx
planes.  The component of the dipole moment perpendicular to the planes is then 
the current times these areas.



Reaction Wheel Model

• Rotor moment for wheel i may be expressed in terms of unit basis vectors  𝑢𝑖 and  𝑣𝑖 fixed in the wheel frame.  Predicting 

fields requires wheel speeds 𝜔𝑖
𝑅𝑊, rotor phases 𝜓𝑖

𝑅𝑊and the rotor dipole moments 𝑚𝑖
𝑅𝑊.  We can sum the moments as

𝑚𝑅𝑊 = 

𝑖=1

6

𝑚𝑖
𝑅𝑊 𝑐𝑜𝑠𝜓𝑖  𝑢𝑖 + 𝑠𝑖𝑛𝜓𝑖  𝑣𝑖

• If  𝑘 is the unit vector along the spacecraft z-axis, the  𝑢𝑖 and  𝑣𝑖 unit vectors are

 𝑢𝑖 =   𝑘 ×  𝑤𝑖  𝑘 ×  𝑤𝑖  𝑣𝑖 =   𝑤𝑖 ×  𝑢𝑖  𝑤𝑖 ×  𝑢𝑖

• If  𝑟𝑅𝑊 is the wheels-to-magnetometer vector, compute wheel dipole moment vector 𝑚𝑅𝑊and the field it produces as 

𝐵𝑅𝑊 = 𝛽  𝑟𝑅𝑊 𝑚𝑅𝑊
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Rotor Phase Angle 𝜓
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We measure rotor phase 𝜓 as the angle of the dipole moment vector 𝑚𝑅𝑊 from 
the wheel assembly  𝑢 and  𝑣 axes.



Stray Field Characterization

To remove the solar array, arcjet and reaction wheel fields as outlined 

above, we need to know:

1. Solar array drive angle, circuit areas and currents

2. Arcjet effective circuit areas, normal vectors and currents

3. Rotor dipole moments, rotation rates and phases
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Solar Array Characterization

• The solar array drive angle and currents come in telemetry, so the important remaining items to 

determine are the circuit areas.  On the ground, known currents were forced through the solar 

array circuits, and the resulting magnetic fields were measured at two heights above the array.  

These were then normalized by the applied currents 𝑖𝑖
𝑆𝐴 to give the effective areas 𝐴𝑖

𝑆𝐴 for each 

circuit

𝐴𝑖
𝑆𝐴 =  𝑚𝑖

𝑆𝐴 𝑖𝑖
𝑆𝐴

• On-orbit we hope to dither the solar array and estimate its dipole moment from the resulting field 

variation.  We have to choose dither amplitude and frequency that satisfy the solar array angular 

velocity 𝜔 and acceleration 𝛼 constraints while changing the field appreciably at a frequency well 

above that of ambient variations.  
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Solar Array Characterization

• Maximum solar array angular velocity 𝜔 and acceleration 𝛼 constrain Ω and Θ are

𝜔 =  𝜃 ≤ ΩΘ ≤ 𝜔𝑚𝑎𝑥

𝛼 =  𝜃 ≤ Ω2Θ ≤ 𝛼𝑚𝑎𝑥

• Dithering causes the solar array field to vary about a non-zero mean value.  To estimate the dipole moment, we 

first subtract the average field value from both the observation and the prediction.  A direct search then 

minimizes the sum of squared errors.

• With one hour of 5o dithering, we expect to estimate the solar array dipole moment to 0.5 Am2 (1𝜎) accuracy.  

Although less accurate than ground measurement, it does provide a check under flight-like conditions.  If we were 

to use these in-flight estimates, we would still reduce solar array stray fields by half.
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Reduction of Solar Array Fields
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Estimating the solar array dipole moment reduces the uncertainty to 0.5 Am2 and 
cuts the expected solar array field error in half.



Arcjet Characterization

• It is not possible to fire the arcjets on the ground with the cabling in a flight-like configuration, so 

arcjet magnetic characterization has to be on-orbit.  In normal operations, the arcjets are fired 

every few days in one long pulse.  The on- and off-transitions should be quite sharp, and we know 

when to look for them.  

• As above, the procedure would be to solve a least squares problem for the arcjet dipole moment 

using the change in the observations ∆𝐵𝐼𝐵/𝑂𝐵 before and after the transitions

∆𝐵𝐼𝐵

∆𝐵𝑂𝐵
=

𝛽  𝑟𝐼𝐴

𝛽  𝑟𝑂𝐴
𝑚𝑎/𝑏

where  𝑟𝐼𝐴and  𝑟𝑂𝐴are the arcjet-to-inboard and -outboard magnetometer position vectors.
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Arcjet Characterization

• Without noise, it would only take one 𝑎 and one 𝑏 arcjet pair pulse to determine the fields.  

• The magnetometer noise 𝜎 plus the ambient field variability 𝜎𝐵, however, make it necessary 

to average multiple firings.  

• If over the time it takes the magnetometer to respond to the arcjet step transition, the 

ambient field does not change, the only noise is from the magnetometer itself.  

• In this case, it would take 100 transitions (50 pulses) to reduce the 0.10 nT magnetometer 

noise to the 0.01 nT level we might want for arcjet field knowledge.
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Reaction Wheel Characterization

• Before assembly, Doug Westbury measured the magnetic dipole moment of each of the six reaction wheel 

rotors.  Assuming the dipole moment does not change, if we knew the rotor orientations, i.e. phase angles, we 

could predict the reaction wheel fields at the magnetometers.  

• Unfortunately, there is no rotor phase telemetry, so we have to estimate phase.  We use wheel speeds to 

propagate phase between observations, i.e. times when the rates are within the magnetometer passband.  

During those times, we estimate the rotor fields and remove them from the magnetometer readings.

• When wheel speeds are within the magnetometer passband, measurements are corrupted. Wheel speeds are 

used as inputs to a bank of Least Mean Squares (LMS) based adaptive filters. Because all six wheels may be 

within the measurement passband, the required number of filters is six, i.e. one per wheel. 
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Typical Reaction Wheel Fields
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This is actually a worst case in which all six reaction wheel speeds are in-band.  The 
magnitude was also multiplied by a factor of seven to make it more noticeable.



Reaction Wheel Characterization

Each LMS adaptive filter is responsible for estimating the wheel dipole phase angle and amplitude. 

• There are two inputs to each LMS adaptive filter. One is the tach signal, and the other is the filter effectivity error. 

Filter effectivity error is a measure of how well the filter is removing the undesired wheel field. Based on these two 

inputs, the LMS adaptive filter generates a correction signal to remove the dipole field. 

• To prevent the LMS filters from competing with each other in a detrimental manner, the learning rates for the six 

LMS adaptive filters are skewed. This has the effect of permitting some filters to converge to wheel magnetic 

dipole signals quicker than other filters. 

• The top row shows the simulated reaction wheel fields superimposed on a sinusoidally-varying ambient field.  The 

traces are wide when the wheel speeds go through the magnetometer passband.  The bottom row shows the 

magnetometer readings after being corrected with the LMS filter estimates.
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Reduction in Reaction Wheel Effects
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The slow diurnal sinusoid is the assumed ambient field.  The thick traces at the 
top are corrupted by the exaggerated reaction wheel fields.  The thin traces have 
had the wheel fields removed by the LMS filters.



Conclusions

There are multiple ways of dealing with stray magnetic field errors in space-based magnetometer systems.  

• We have examined gradiometer noise sensitivity and recommended when to use gradiometry and when to average.  

Unless stray fields are twice as large as magnetometer noise, covariance analysis suggests that it is preferable for 

GOES-R to average rather than use the gradiometer.  

• We have also outlined models for three common sources of stray fields, i.e. solar arrays, arcjets and reaction wheels, 

and suggested how the necessary parameters can be measured and the stray fields removed.  It may be prudent to add 

these steps to the ground processing.  

• One question not covered is on-orbit performance verification.  How will we know that any corrections we make actually 

help?  There may be times when we are collocated with other GOES satellites, but most of the time there will be no 

reference nearby.  This and other operations questions remain to be addressed.
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Estimating BOL Calibration Performance (IB Mag)

When the magnitude of the field change over the calibration period exceeds 3 nT, 
the bias error was found to be significantly more uncertain.


